Description:


小G是一个出色的诗人,经常作诗自娱自乐。但是,他一直被一件事情所困扰,那就是诗的排版问题。
一首诗包含了若干个句子,对于一些连续的短句,可以将它们用空格隔开并放在一行中,注意一行中可以放的句子数目是没有限制的。小G给每首诗定义了一个行标准长度(行的长度为一行中符号的总个数),他希望排版后每行的长度都和行标准长度相差不远。显然排版时,不应改变原有的句子顺序,并且小G不允许把一个句子分在两行或者更多的行内。在满足上面两个条件的情况下,小G对于排版中的每行定义了一个不协调度, 为这行的实际长度与行标准长度差值绝对值的P次方,而一个排版的不协调度为所有行不协调度的总和。
小G最近又作了几首诗,现在请你对这首诗进行排版,使得排版后的诗尽量协调(即不协调度尽量小),并把排版的结果告诉他。

Input:


输入文件中的第一行为一个整数T,表示诗的数量。

接下来为T首诗,这里一首诗即为一组测试数据。每组测试数据中的第一行为三个由空格分隔的正整数N,L,P,其中:N表示这首诗句子的数目,L表示这首诗的行标准长度,P的含义见问题描述。

从第二行开始,每行为一个句子,句子由英文字母、数字、标点符号等符号组成(ASCII码33~127,但不包含'-')。

Output:


对于每组数据,若最小的不协调度不超过 \(10^{18}\) ,则第一行一个数表示不协调度若最小的不协调度超过 \(10^{18}\) ,则输出"Too hard to arrange"(不包含引号)。每个输出后面加"--------------------"

Sample Input:


Sample Output:


题解:


DP式子还是很好推的,设 \(f_i\) 表示前 \(i\) 句排版的最小不协调度,设 \(S_i\) 为前 \(i\) 句长度的前缀和。

然后可以决策单调性优化。

调了很久,最后代码惨不忍睹。